AI-B-Ni (Aluminum-Boron-Nickel)

V. Raghavan

The previous review of this system by [1989Sch] presented isothermal sections at 1000 and 800 °C mainly from the experimental studies of [1962Sta] and [1973Cha]. More recently, [1999Cam] made a thermodynamic analysis of this system and compared the computed isothermal sections with the experimental data.

Binary Systems

The Al-B phase diagram depicts at least two intermediate phases: AlB₂ (*C*32-type hexagonal) and AlB₁₂ (the hightemperature orthorhombic β form and the low-temperature tetragonal α form). [1999Cam] reassessed the system using new experimental data on the melting of AlB₁₂ and presented a calculated diagram. The Al-Ni phase diagram [1993Oka] shows five intermediate phases: NiAl₃ (*D*0₁₁, Fe₃C-type orthorhombic), Ni₂Al₃ (*D*5₁₃-type hexagonal), NiAl (*B*2, CsCl-type cubic, also denoted β), Ni₅Al₃ (Ga₃Pt₅-type orthorhombic), and Ni₃Al (*L*1₂, AuCu₃-type cubic, denoted γ'). The B-Ni phase diagram recomputed by [1999Cam] shows five intermediate phases: Ni₃B (*D*0₁₁, Fe₃C-type orthorhombic), Ni₂B (C16, CuAl₂-type tetragonal), Ni₄B₃ (orthorhombic), Ni₄B₃ (monoclinic), and NiB (*B*₆ CrB-type orthorhombic).

Ternary Phases

Three ternary phases are known in this system: $Ni_{20}Al_3B_{6-12}$ ($D8_4$, $Cr_{23}C_6$ -type cubic; denoted τ), Ni_8AlB_{11} (denoted here as τ' ; monoclinic above 800 °C and unknown structure below 800 °C), and Ni_5AlB_4 (unknown structure; denoted here as τ'').

Isothermal Sections

[1999Cam] described the liquid phase using a regular solution model. The face-centered cubic (fcc) phases based on Ni and Al were described by a two-sublattice model, one for the metal atoms and the other for the interstitial B atoms in the octahedral voids. The Ni₃Al (γ') was modeled by adding an ordering energy term to the disordered fcc description. The homogeneity range, if any, of the Al-B and Ni-B binary compounds and the third element solubility in them were ignored. Provision was made for the B variation in the ternary compound τ by adding vacancy to one of the sublattices containing B. The compounds τ' and τ'' were treated as stoichiometric.

The isothermal sections computed by [1999Cam] at 1000 and 800 °C are redrawn in Fig. 1 and 2. At 1000 °C (Fig. 1),

Fig. 1 Al-B-Ni computed isothermal section at 1000 °C [1999Cam]. Narrow two-phase regions are omitted.

Fig. 2 Al-B-Ni computed isothermal section at 800 °C [1999Cam]. Narrow two-phase regions are omitted.

the three-phase regions of NiB + Ni₄B₃ (m) + τ' and Ni₄B₃ (m) + $\tau + \tau'$ are present, in place of NiB + $\tau + \tau'$ and Ni₄B₃ (m) + τ + NiB in the experimental section [1989Sch]. This difference was not reconciled, pending the availability of more detailed experimental information. At 800 °C (Fig. 2), the triangulations in the computed and experimental sections are identical in this region.

References

- 1962Sta: H.H. Stadelmaier and A.C. Fraker, The Nickel Corner of the Ni-Al-B System, *Metall.*, 1962, 16, p 212-214, in German
- 1973Cha: N.F. Chaban and Y.B. Kuzma, Isothermal Cross Sections of the Systems {Co,Ni}-{Al,Si}-B, *Neorg. Mater.*, 1973, 9(12), p 2136-2140, in Russian; TR: *Inorg. Mater.*, 1973, 9(12), p 1886-1889
- 1989Sch: E. Schmid, The Al-B-Ni (Aluminum-Boron-Nickel) System, *Bull. Alloy Phase Diagrams*, 1989, 10(5), p 537-539
- **1993Oka:** H. Okamoto, Al-Ni (Aluminum-Nickel), J. Phase Equilib., 1993, **14**(2), p 257-259
- **1999Cam:** C.E. Campbell and U.R. Kattner, A Thermodynamic Assessment of the Ni-Al-B System, *J. Phase Equilib.*, 1999, **20**(5), p 485-496